下面
大型航天模型厂家来给大家讲解下航天模型的知识,大家可以作为参考信息了解一下。
Next, large-scale aerospace model manufacturers will explain the knowledge of aerospace models to you, and you can learn about them as reference information.
一、机翼升力原理
1、 Wing lift principle
飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。当气流迎面流过机翼时,原来是一股气流,由于机翼地插入,被分成上下两股。
The ground wing section of an aircraft wing is also called an airfoil. Generally, the front end of an airfoil is blunt, the rear end is sharp, the upper surface is arched, and the lower surface is flat, showing a fish side shape. The front point is called the leading edge, the rear point is called the trailing edge, and the line between the two points is called the chord. When the air flows head-on through the wing, it is a stream of air. Because the wing is inserted, it is divided into upper and lower streams.
通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,是上方的那股气流的通道变窄。根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。
After passing through the wing, a new strand is formed at the trailing edge. As the upper surface of the wing arches, the passage of the upper air stream narrows. According to the continuity principle of air flow and Bernoulli's theorem, the pressure above the wing is less than that below the wing, that is, the upward pressure on the lower surface of the wing is greater than the downward pressure on the upper surface of the wing. This pressure difference is the lift generated by the wing.
二、飞机机的翼阻力
2、 Wing resistance of aircraft
只要物体同空气有相对运动,必然有空气阻力作用在物体上。作用在模型飞机上的阻力主要有摩擦阻力、压差阻力和诱导阻力。
As long as the object has relative motion with air, there must be air resistance acting on the object. The drag acting on the model aircraft mainly includes frictional drag, differential pressure drag and induced drag.
摩擦阻力:当空气流过机翼表面的时候,由于空气的粘性作用,在空气和机翼表面之间会产生摩擦阻力。如果机翼表面的边界层是层流边界层,空气粘性所引起的摩擦阻力比较小,如果机翼表面的边界层是紊流边界层,空气粘性所引起的摩擦阻力就比较大。
Friction resistance: when air flows over the wing surface, friction resistance will occur between the air and the wing surface due to the viscous effect of air. If the boundary layer on the wing surface is laminar, the friction resistance caused by air viscosity is relatively small; if the boundary layer on the wing surface is turbulent, the friction resistance caused by air viscosity is relatively large.
为了减少摩擦阻力,可以减少模型飞机同空气的接触面积,也可以把模型飞机表面做光滑些。但不是越光滑越好,因为表面太光滑,容易保持层流边界层,而层流边界层的气流容易分离,会使压差阻力大大增加。
In order to reduce the friction resistance, the contact area between the model aircraft and the air can be reduced, and the surface of the model aircraft can also be made smooth. However, the smoother the better, because the surface is too smooth, it is easy to maintain the laminar boundary layer, and the laminar boundary layer is easy to separate the air flow, which will greatly increase the differential pressure resistance.
三、飞机模型翼型
3、 Airfoil of aircraft model
常用的模型飞机翼型有对称、双凸、平凸、凹凸,s形等几种,对称翼型的中弧线和翼弦重合,上弧线和下弧线对称。这种翼型阻力系数比较小,但升阻比也小。一般用在线操纵或遥控特技模型飞机上双凸翼型的上弧线和下弧线都向外凸,但上弧线的弯度比下弧线大。这种翼型比对称翼型的升阻比大。一般用在线操纵竞速或遥控特技模型飞机上
The commonly used model aircraft airfoils are symmetrical, biconvex, plano convex, concave convex, s-shaped, etc. The middle arc of the symmetrical airfoil coincides with the chord, and the upper arc is symmetrical with the lower arc. The drag coefficient of this airfoil is relatively small, but the lift drag ratio is also small. In general, the upper and lower arcs of a doubly convex airfoil on a model aircraft that is operated online or remotely are convex outward, but the curvature of the upper arc is greater than that of the lower arc. This airfoil has a higher lift drag ratio than symmetric airfoils. It is generally used for online control of racing or remote control stunt model aircraft
四、飞机模型视图
4、 Aircraft model view
把一架处于水平状态的模型飞机,放在相互垂直的三个平面中间,并使机身的纵轴同其中一个平面垂直,同另外两个平面平行。如果我们分别从三个方向在足够远的地方看模型飞机,并把看到的形状画在每个平面上,也就是在三个互相垂直的平面上作出模型飞机的投影,然后把这三个相互垂直的平面展开,就可以得到顶视图,侧视图和前视图。在一般情况下,通过这三个视图就能比较准确地表示出一架模型飞机的形状和主要尺寸。
Place a horizontal model airplane in the middle of three mutually perpendicular planes, and make the longitudinal axis of the fuselage perpendicular to one of the planes and parallel to the other two planes. If we look at the model airplane from three directions at a distance far enough, and draw the shape we see on each plane, that is, make a projection of the model airplane on three mutually perpendicular planes, and then unfold the three mutually perpendicular planes, we can get the top view, side view and front view. In general, the shape and main dimensions of a model aircraft can be accurately represented through these three views.
五、飞机的螺旋桨
5、 The propeller of an airplane
螺旋桨是一种把发动机的动力变成拉力的装置。螺旋桨的效率的高低会直接影响到模型飞机的飞行成绩。螺旋桨桨叶的工作原理和机翼十分相似。如果把桨叶取下来观察,就会发现它是一个扭曲着的机翼。桨叶剖面和机翼剖面差不多。桨叶和机翼的区别在于,机翼在空气中的运动基本上是平动的,而桨叶既绕着桨轴旋转,又随着飞机千起前进。
A propeller is a device that turns the power of an engine into a pulling force. The efficiency of propeller will directly affect the flight performance of model aircraft. The working principle of propeller blades is very similar to that of wings. If you take down the blade and observe it, you will find that it is a twisted wing. The blade profile is similar to the wing profile. The difference between blades and wings is that the movement of wings in the air is basically translational, while blades not only rotate around the propeller shaft, but also move forward with the aircraft.
So much for the relevant content of the aerospace model. If you have any relevant content, please come to our website http://www.quanyimoxing.com Consult!